服务热线:(0591)87986605
当前位置:福建升学信息平台> 高考> 文章内容

一人一句!高考考试易犯的低级错误!考前必看!

最后更新时间:2022-05-06 14:33:49
你平时容易粗心犯错的地方是哪里?

1.集合中元素的特征认识不明。
元素具有确定性,无序性,互异性三种性质。

2.遗忘空集。
A含于B时求集合A,容易遗漏A可以为空集的情况。比如A为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。

3.忽视集合中元素的互异性。

4.充分必要条件颠倒致误。
必要不充分和充分不必要的区别——:比如p可以推出q,而q推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。

5.对含有量词的命题否定不当。
含有量词的命题的否定,先否定量词,再否定结论。

6.求函数定义域忽视细节致误。
根号内的值必须不能等于0,对数的真数大于等于零,等等。

7.函数单调性的判断错误。
这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。

8.函数奇偶性判定中常见的两种错误。
判定主要注意:
1)定义域必须关于原点对称,
2)注意奇偶函数的判断定理,化简要小心负号。

9.求解函数值域时忽视自变量的取值范围。
总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。

10.抽象函数中推理不严谨致误。

11.不能实现二次函数,一元二次方程和一元二次不等式的相互转换。
二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么刁塔(那个小三角形)b的平方-4ac大于等于小于0种种。

12.比较大小时,对指数函数,对数函数,和幂函数的性质记忆模糊导致失误。

13.忽略对数函数单调性的限制条件导致失误。

14.函数零点定理使用不当致误。
f(a)xf(b)<0,则区间ab上存在零点。

15.忽略幂函数的定义域而致错。
x的二分之一次方定义域为0到正无穷。

16.错误理解导数的定义致误。

17.导数与极值关系不清致误。
f‘派x为0解出的根不一定是极值这个要注意。

18.导数与单调性关系不清致误。

19.误把定点作为切点致误。
注意题目给的是过点p的切线还是在点p的切线,再不行就把点代进去f(x)看点p是不是切点。

20.忽略幂函数的定义域而致错。
x的二分之一次方定义域为0到正无穷。

21.错误理解导数的定义致误。

22.导数与极值关系不清致误。
f‘派x为0解出的根不一定是极值这个要注意。
导数与单调性关系不清致误。

23.误把定点作为切点致误。
注意题目给的是过点p的切线还是在点p的切线,再不行就把点代进去f(x)看点p是不是切点。

24.计算定积分忽视细节致误。

25.忽视角的范围。

26.图像变换方向把握不准。

27.忽视正。余弦函数的有界性。

28.解三角形时出现漏解或增解。

29.向量加减法的几何意义不明致误。

30.忽视平面向量基本定理的使用条件致误。

31.向量的模与数量积的关系不清致误。

32.判别不清向量的夹角。

33.忽略an=sn—sn—1的成立条件。

34.等比数列求和时,忽略对q是否为1的讨论。

35.数列项数不清导致错误。

36.考虑问题不全面而导致失误。

37.用错位相减法求和时处理不当。

38.忽视变形转化的等价性。

39.忽视基本不等式应用条件。

40.不等式解集的表述形式错误。

41.恒成立问题错误。

42.目标函数理解错误。

43.由三视图还原空间几何体不准确致误。

44.空间点,线,面位置关系不清致误。

45.证明过程不严谨致误。

46.忽视了数量积和向量夹角的关系而致误。

47.忽视异面直线所成角的范围而致错。

48.用向量法求线面角时理解有误而致错。

弄错向量夹角与二面角的关系致误。

49.解折叠问题时没有理顺折叠前后图形中的不变量和改变量致误。

50.忽视斜率不存在的情况。

51.忽视圆存在的条件。

52.忽视零截距致误。

53.弦长公式使用不合理导致解题错误。

54.焦点位置不确定导致漏解。

55.忽视限制条件求错轨迹方程。

56.解决直线与圆锥曲线的相交问题时忽视大于零的情况。

57.两个原理不清而致错。

58.排列组合问题错位或出现重复,遗漏致误。

59.忽视特殊数字或特殊位置而致错。

60.混淆均匀分组与不均匀分组致错。

61.不相邻问题方法不当而致错。

62.混淆二项式系数与项的系数而致误。

63.混淆频率与频率/组距致误。

64.分布列的性质把握不准致错。

65.混淆独立事件与互斥事件而致错。

66.求分布列错误而致均值或方差错误。

67.正态分布中概率计算错误。

68.忽视类比的对应关系致误。

69.反证法中假设不准确导致证明错误。

70.程序框图中执行次数判断错误。